
Experimental design

In this experiment 2 Iot edge devices, node micro controller units with the ESP8266
WiFi module equipped with a 2.4GHz transceiver with a meander PCB antenna. These
modules are used to publish temperature data to amazon web services cloud. A MQTT
protocol connection is established between the master node and AWS to publish data
using quality of service level 0. UDP is implimented as a connection between nodes.
Each node within the system uses a DHT11 sensor. TLS security is also implimented at
the transport layer. Network layer security is not considered in this paper whilst TLS will be
implimented to better represent the use case of this system.

Abstract

This poster discusses fault tolerance in distributed systems
specifically within the internet of things. IoT systems require
robust sensing and networking both can be crucial for the
correct operation of the system. An experiment is conducted
utilising the MQTT protocol, NTP for clock synchronisation
and a UDP connection between nodes and a UPS to achieve
a fault tolerant and fault aware sensor system. An analysis is
conducted to evaluate the effectiveness of the system in being
fault tolerant.

Background

IoT fault tolerance is imperative, users expect their smart applications to operate
correctly and continuously (Terry D. 2018). Sensor networks are expected to remain
functional however hardware faults and damage does occur. Within the application
scenario of fire detection damage to hardware is highly likely. It is also important that
the sensor system is readily available with no sensor fault to avoid an instance where a
fire occurs yet it is not detected due to a fault within the system. By creating a linked
topology of IoT nodes the failure of a sensor can be identified and the system can
continue to operate. The network time protocol is used to sync the CPU clock of the
master node to the network this is completed using the NTP pool project a virtual
cluster of timeservers (T. Rytilahti et al. 2018) that sets the master node clock to UTC
(coordinated universal time).

The message que telemetry transport protocol MQTT is a lightweight publish-subscribe
network protocol developed by IBM (Johari, R et al. 2020). Quality of service is an
important variable within the MQTT protocol, quality of service level 0 is the minimal
QoS level. This service level guarantees a best-effort delivery. There is no guarantee of
delivery. The recipient does not acknowledge receipt of the message and the message
is not stored and re-transmitted by the sender. Quality of service level 1 refers to when
the client receives a return packet from the broker to acknowledge receipt of the
message and so yeilds more reliability as this method guarantees that the message will
be transferred successfully to the broker this provides the same guarantee as the
underlying TCP protocol.

Alqinsi, P et al (2018) detail an IoT Based UPS Monitoring System Using MQTT this
system uses a digital ammeter and voltmeter to monitor AC input and UPS output. In
terms of fault tolerance this system can be used to monitor power supply parameters to
identify AC failure and calculate the amount of time the system can continue to operate
based on the power draw from the UPS. The system will continue to function for only a
finite amount of time before the UPS battery is drained.

Sadio, O et al. (2019) state that security within the MQTT protocol is left to the implementer,
security often uses TLS at the transport layer. Arjadi, R et al (2018) conduct a received
signal strength indicator comparison of ESP8266 based modules. Modules with an
integrated dipole antenna yeilded the strongest RSSI. The use of better antennas would
help to increace the fault tollerance of the system.

Introduction

The goal of my research is to improve fault tolerance in IoT
distributed sensor networks. This poster considers various
fault tolerant systems to evaluate the effectiveness of existing
solutions and to propose a solution derived from relevant
literature to perform an experiment to analyse the solution
effectiveness. This posters' scope looks specifically at fault
tollereance at the "thing" level with a focus on hardware to
support reliable edge computing for the transmition of data to
a remote server.

The rationale for this problem is that due to the
heterogeneous nature of distributed systems there are many
components and layers that can introduce a multitude of
various faults. Due to the nature of a distributed system fault
handling is necessary to prevent an entire system crash. This
is often achieved using hardware and software redundancy,
robust networking and the implimentation of an
uninterruptable power supply and appropriate security.

Security is also considered due to the possibility of a hacker
being able to introduce faults within the system through data
interception and corruption through a man in the middle attack
during data transmission.

Constraints on the experiment detailed in this paper include
hardware limitations to 2 node MCU units with finite memory
of 1044464 Bytes each for program, certificate and key
storage including the networking environment in which the
experiment is conducted.

Hypothesis

Introducing hardware redundancy increases the reliability and
availability of the resource the redundancy is intended to
protect and allows the application to continue to function
during a fault instance. A UPS prevents power failure of nodes
within the system for a specific ammount of time based on the
device power draw.

- More nodes can be added if
needed.

- Redundant sensors can be
added for each individual node
to switch between.

- Temperature data is published
to AWS and a timestamp is
assigned.

- NTP is used to sync time for the
master node to the coordinated
universal time of the internet to
integrate with AWS.

- OutTopic for the publication of
sensor data.

Independent variables

- Introduction of fault instances
hardware failure, power failure
and network failure of each
node.

Controlled variables

- Protocols used, node hardware
identical microcontroller unit
architecture, identical sensors.

Dependent variables

- Timestamp and message data.

Discussion

- Figure 1 shows the architecture of the proposed sensing
system, Figures 2,3 and 4 show the data received by AWS
where the system continues to function when sensor
hardware fails represented by nan (not a number).

- For IoT applications that require near real-time wireless
connections, the traditional TCP protocol is not adept
enough due to the size of its packet header therefore I have
used UDP, in this case UDP has been successful in
transmitting real-time data. There is less data integrity using
UDP due to packet drops however real-time data is more
important in this scenario and packet drops are not mission
critical.

- Figure 6 shows the consistency of messages received
during a network failure. After message 300 the graph
shows the last message received by the broker since no
timestamp is assigned to a new message due to the
network failure. The connection is re-established and
throughout is shown to be inconsistent until moved closer to
the access point.

- The experiment outcome proves my hypothesis that
introducing redundancy allows the application to continue to
function during a hardware failure. Networking remains a
key aspect in the implementation of a sensor network and
must be reliable and robust to support the fault tolerant
application.

- Power is another key considerable for fault tolerance, the
power supply to each node must be maintained. This can
be achieved using an uninterruptable power supply UPS. A
UPS implements mains power supply coupled with a battery
backup to continue operation if mains power is not supplied.
A simple solution was implemented within the experiment
where a battery that is simultaneously charged is used to
supply power to the nodes.

Conclusion

The fault tolerant architecture presented works as intended
and is successful in publishing both node temperature and not
a number to identify failed sensors.

The resource redundancy was intented to protect was sensor
data that is sent to AWS. The hypothesis was proven by the
experiment as redundancy was sucsessful in protecting the
resorce (tempreture sensor data) for transmition to the broker.

The master node retains the previous message received via
UDP in the event of a redundant node failure this makes a
fault with the sender node undiagnosable by the master node,
programming the master node to set a flag when the UDP
connection goes offline would solve this problem.

The solution proposed published nan where a sensor has
failed, it would be more effective to publish to a separate
failure topic acting as a flag to faults where a subscriber can
display whether a failure has occurred. A separate subscriber
can also be implemented to display sensor measurements on
any device that supports MQTT.

Future work

- To further improve fault tolerance when the master node
goes offline the MQTT connection could be re-established
on another functioning node this would further protect the
system from the single point of failure from the master node
that would render the entire system inoperable.

- J.Grover et al. (2018) discuss using a mobile agent to
transfer load if the server cannot handle throughput, a
similar system could be implemented where if a node
cannot handle throughput or goes offline it can balance
using MQTT on redundant nodes, if the master node is
disconnected from the network a reduntant node can be
programed to establish a new MQTT connection.

- A redundant sensor for each node can be implimented to
further increase the fault tollerance within each node.

- The implimentation of a digital voltmeter and ammeter
within the experement would have improved the fault
handling within the system.

References

Grover, J., & Garimella, R. M. (2018, October). Reliable and fault-tolerant
IoT-edge architecture. In2018 IEEE sensors(pp. 1-4). IEEE.

Terry, D. (2016). Toward a new approach to IoT fault
tolerance.Computer,49(8), 80-83.

Rytilahti, T., Tatang, D., Köpper, J., & Holz, T. (2018, April). Masters of
time: An overview of the NTP ecosystem. In2018 IEEE European
Symposium on Security and Privacy (EuroS&P)(pp. 122-136). IEEE.

Masirap, M., Amaran, M. H., Yussoff, Y. M., Ab Rahman, R., & Hashim,
H. (2016, May). Evaluation of reliable UDP-based transport protocols for
Internet of Things (IoT). In2016 IEEE Symposium on Computer
Applications & Industrial Electronics (ISCAIE)(pp. 200-205). IEEE.

Kang, D. H., Park, M. S., Kim, H. S., Kim, D. Y., Kim, S. H., Son, H. J., &
Lee, S. G. (2017, February). Room temperature control and fire
alarm/suppression IoT service using MQTT on AWS. In2017 International
Conference on Platform Technology and Service (PlatCon)(pp. 1-5).
IEEE.

Johari, R., Bansal, S., & Gupta, K. (2020, September). Routing in IoT
using MQTT Protocol. In2020 12th International Conference on
Computational Intelligence and Communication Networks (CICN)(pp.
1-5). IEEE.

Alqinsi, P., Edward, I. J. M., Ismail, N., & Darmalaksana, W. (2018, July).
IoT-Based UPS monitoring system using MQTT protocols. In2018 4th
International Conference on Wireless and Telematics (ICWT)(pp. 1-5).
IEEE.

Sadio, O., Ngom, I., & Lishou, C. (2019, October). Lightweight
security scheme for mqtt/mqtt-sn protocol. In 2019 Sixth
International Conference on Internet of Things: Systems,
Management and Security (IOTSMS) (pp. 119-123). IEEE.

Arjadi, R. H., Candra, H., Prananto, H. D., & Wijanarko, T. A. W.
(2018, October). RSSI Comparison of ESP8266 Modules. In
2018 Electrical Power, Electronics, Communications, Controls
and Informatics Seminar (EECCIS) (pp. 150-153). IEEE.

Fault tolerance in IoT sensor networks, a distributed
systems perspective.

Problem Statement

The problem this document will explore is Fault tolerance within
a distributed sensor network. The application scenario I will
explore is fire detection. This problem is significant as if a
sensor node (IoT device) is unable to communicate with the
server to publish its data this creates a critical error that makes
the entire system crash and renders the application unusable.
To evaluate the fault tolerance of the system throughput
consistency is considered during a LAN failure. Measurable?s
will be the timestamp accociated with each message and the
payload data of the message.

Aim

The aim of this paper is to design a fault tolerant architecture for
NodeMCU based sensing systems.

Objectives

- Derive a fault tollerant architecture with specific
considerations within the application scenario to represent
the use case for the system.

- Hardware redundancy, 2 IoT nodes each with a temp sensor,
if any sensor goes offline the system can continue to operate.

- Local connection (UDP) between nodes in case of a network
failure on a single node.

- UDP receiver and cloud publisher program (Master Node) &
UDP sender program (Redundant node).

- Using Amazon cloud services for node temperature
subscription.

- Identify possible failure instances.

- Analyse the consistency in message throughput during a
local area network failure.

- Analyse the effect of power failure of nodes within the
system.

- Analyse the effect of failed sensors on the system.

- A timestamp is assigned by
AWS for each message the
timestamp is in milliseconds
from the coordinated universal
time of the internet.

- Messages continue to be
received by AWS if a UDP
node fails.

- Nan (Not a number) is
published as a flag to show
when a sensor has failed.

- Power outage on the second
node results in no temperature
being displayed for UDP yet
the system is still able to
function. This only occurs when
the second node has not yet
sent data to the MQTT node as
this node retains the previous
message.

Figure 2: JSON showing temperature on both nodes.

Figure 3: JSON showing failure of sensor on master
node.

Figure 4: JSON showing failure of sensor on UDP node.

Results

The message throughput results obtained from AWS are shown in Figures 5 &
6, figure 5 shows the control where the sensor network was placed next to the
router. Figure 6 shows when the master node is moved beyond the WiFi signal

threshold.

Figure 5: Throughput consistancy control Figure 6: Message consistancy, network failure.

Figure 1: Illustration of experiment architecture.

	DS
	Page 1

